Skip to main content

Configuring the AI Engine

The Neolens AI engine is highly configurable, allowing you to tailor detection sensitivity, analysis depth, and output verbosity to your clinical or research needs.


Understanding Key Configuration Parameters

Neolens AI models provide several configuration parameters to let you tailor how the system interprets, analyzes, and outputs results. The most frequently adjusted parameters include:

1. Detection Sensitivity (sensitivity)

Defines how aggressively the model should flag findings.

  • low (0.3): Reduces false positives but may miss subtle anomalies
  • medium (0.5): Balanced behavior (default)
  • high (0.8): Detects even minor anomalies, with higher risk of noise
{
"sensitivity": "medium",
"confidence_threshold": 0.5
}

2. Analysis Depth (depth)

Controls how deeply the AI should analyze each image.

  • shallow: Faster analysis, surface-level insights (~2-5 seconds)
  • standard: Good tradeoff for most use cases (~5-15 seconds, default)
  • deep: Slower but richer and more exhaustive evaluation (~15-45 seconds)

3. Output Verbosity (verbosity)

Specifies the amount of detail included in the response.

  • minimal: Essential data only (findings, confidence scores)
  • standard: Includes explanations and context (default)
  • verbose: Detailed results including intermediate steps
  • debug: Full raw output with model internals (development only)

4. Model Selection (model_version)

Choose specific AI model versions for different use cases:

Model VersionSpecializationBest For
v3.2.1General radiologyX-rays, CT scans (default)
v3.1.5NeuroimagingMRI brain scans
v2.8.3CardiologyCardiac imaging, ECG
experimentalLatest featuresR&D, testing only

5. Region of Interest (roi)

Focus analysis on specific anatomical regions:

{
"roi": {
"region": "thorax",
"coordinates": [100, 50, 400, 300],
"auto_detect": true
}
}

⚡ Performance vs Quality Trade-offs

ConfigurationSpeedAccuracyResource UsageBest For
shallow + low⚡⚡⚡⭐⭐LowScreening, high-volume
standard + medium⚡⚡⭐⭐⭐MediumGeneral clinical use
deep + high⭐⭐⭐⭐HighCritical cases, research

🎯 Configuration by Use Case

Emergency Department Triage

{
"sensitivity": "high",
"depth": "shallow",
"verbosity": "minimal",
"priority_filter": "critical_only",
"response_time_target": "< 5s"
}

Research & Development

{
"sensitivity": "high",
"depth": "deep",
"verbosity": "debug",
"model_version": "experimental",
"uncertainty_estimation": true
}

Routine Screening

{
"sensitivity": "medium",
"depth": "standard",
"verbosity": "standard",
"batch_processing": true,
"false_positive_tolerance": "low"
}

🛠️ Advanced Configuration Options

Custom Thresholds

{
"thresholds": {
"anomaly_detection": 0.7,
"classification": 0.8,
"measurement_precision": 0.95
}
}

Multi-Modal Analysis

{
"multi_modal": {
"enabled": true,
"primary_modality": "ct",
"secondary_data": ["clinical_notes", "lab_results"],
"fusion_strategy": "weighted_ensemble"
}
}

Quality Assurance

{
"qa_settings": {
"image_quality_check": true,
"minimum_resolution": "512x512",
"artifact_detection": true,
"preprocessing": "auto"
}
}

📊 Configuration API

Set Configuration

curl -X PUT "https://api.neolens.ai/v1/config" \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"sensitivity": "high",
"depth": "standard",
"verbosity": "verbose",
"model_version": "v3.2.1"
}'

Get Current Configuration

curl -X GET "https://api.neolens.ai/v1/config" \
-H "Authorization: Bearer YOUR_API_KEY"

Validate Configuration

curl -X POST "https://api.neolens.ai/v1/config/validate" \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"sensitivity": "ultra_high",
"depth": "experimental"
}'

⚠️ Configuration Warnings

Performance Impact
  • deep analysis can increase processing time by 3-5x
  • debug verbosity generates large response payloads (>10MB possible)
  • experimental models may have unstable behavior
Clinical Considerations
  • Higher sensitivity increases false positive rates
  • Lower sensitivity may miss subtle but critical findings
  • Always validate configuration changes with clinical workflows

🧪 Testing Your Configuration

A/B Testing Framework

{
"test_config": {
"baseline": {"sensitivity": "medium", "depth": "standard"},
"variant": {"sensitivity": "high", "depth": "deep"},
"sample_size": 100,
"metrics": ["accuracy", "false_positive_rate", "processing_time"]
}
}

Configuration Profiles

Save commonly used configurations:

{
"profiles": {
"emergency": {...},
"research": {...},
"screening": {...}
}
}

📈 Monitoring Configuration Impact

Track how configuration changes affect:

  • Accuracy metrics: Sensitivity, specificity, AUC
  • Performance: Response time, throughput
  • Clinical outcomes: False positive/negative rates
  • User satisfaction: Radiologist feedback, workflow efficiency

Best Practices
  • Start with default settings and adjust incrementally
  • Test configuration changes on validation datasets before production
  • Document configuration rationale for regulatory compliance
  • Monitor performance metrics after configuration updates
  • Use profiles to quickly switch between use cases