Skip to main content

Interpreting AI Results

Understanding Neolens AI outputs is crucial for safe and effective clinical integration. This guide helps you interpret confidence scores, classifications, and recommendations appropriately.


📊 Understanding Confidence Scores

Confidence Levels Explained

Score RangeInterpretationClinical ActionVisual Indicator
0.90 - 1.00Very High ConfidencePriority review recommended🔴 Red highlight
0.75 - 0.89High ConfidenceStandard workflow🟡 Orange highlight
0.60 - 0.74Moderate ConfidenceConsider additional imaging🟡 Yellow highlight
0.40 - 0.59Low ConfidenceHuman review essential⚪ Gray highlight
0.00 - 0.39Very Low ConfidenceLikely false positiveNo highlight

Example Response Structure

{
"findings": [
{
"label": "pulmonary_nodule",
"confidence": 0.87,
"location": {
"x": 245, "y": 156,
"width": 32, "height": 28
},
"clinical_significance": "moderate",
"follow_up_recommended": true
}
],
"overall_assessment": {
"normal_probability": 0.23,
"abnormal_probability": 0.77,
"urgency": "routine"
}
}

🏷️ Classification Categories

Pathology Labels

Neolens uses standardized medical terminology aligned with:

  • ICD-11 diagnostic codes
  • RadLex radiology lexicon
  • SNOMED CT clinical terminology

Common Classifications

Thoracic Imaging:

  • pneumothorax - Collapsed lung
  • pleural_effusion - Fluid in pleural space
  • pulmonary_nodule - Lung nodule
  • cardiomegaly - Enlarged heart
  • atelectasis - Lung collapse

Neuroimaging:

  • hemorrhage - Brain bleeding
  • ischemic_stroke - Blood clot-related stroke
  • mass_effect - Space-occupying lesion
  • hydrocephalus - Fluid accumulation
  • midline_shift - Brain structure displacement

Abdominal Imaging:

  • bowel_obstruction - Intestinal blockage
  • appendicitis - Appendix inflammation
  • free_air - Pneumoperitoneum
  • hepatomegaly - Enlarged liver

📐 Measurement Interpretation

Anatomical Measurements

{
"measurements": {
"aortic_diameter": {
"value": 4.2,
"unit": "cm",
"reference_range": "2.0-3.5 cm",
"status": "enlarged",
"clinical_significance": "moderate_aneurysm"
},
"left_ventricle": {
"ejection_fraction": 45,
"unit": "percent",
"reference_range": "50-70%",
"status": "reduced",
"clinical_significance": "mild_dysfunction"
}
}
}

Measurement Accuracy

  • Linear measurements: ±2-3mm accuracy
  • Area calculations: ±5-8% variability
  • Volume estimates: ±10-15% uncertainty
  • Angles: ±2-5 degrees precision

🚨 Priority and Urgency Indicators

Urgency Classifications

LevelDescriptionResponse TimeExamples
criticalLife-threatening findings< 1 hourHemorrhage, pneumothorax
urgentRequires prompt attention< 4 hoursLarge masses, fractures
routineStandard follow-up< 24 hoursSmall nodules, mild changes
incidentalUnexpected findingsVariableBenign cysts, artifacts

Priority Scoring Algorithm

Priority Score = (Confidence × 0.4) + (Clinical Significance × 0.3) + (Size/Extent × 0.3)

Where:
- Confidence: 0.0-1.0
- Clinical Significance: 0.0-1.0 (based on pathology severity)
- Size/Extent: 0.0-1.0 (normalized to anatomy)

🔄 Contextualizing Results

Patient History Integration

Consider AI results alongside:

  • Demographics: Age, gender, medical history
  • Clinical presentation: Symptoms, vital signs
  • Prior imaging: Comparison studies, disease progression
  • Laboratory data: Biomarkers, blood work

Imaging Context

  • Modality limitations: CT vs MRI vs X-ray capabilities
  • Acquisition parameters: Slice thickness, contrast timing
  • Image quality: Motion artifacts, noise levels
  • Technical factors: Scanner type, reconstruction algorithms

📈 Longitudinal Analysis

Tracking Changes Over Time

{
"longitudinal_analysis": {
"baseline_study": "2024-01-15",
"current_study": "2024-08-05",
"changes_detected": [
{
"finding": "pulmonary_nodule",
"baseline_size": "8mm",
"current_size": "12mm",
"growth_rate": "4mm over 6 months",
"doubling_time": "18 months",
"recommendation": "short_term_follow_up"
}
]
}
}

Growth Pattern Analysis

  • Doubling time calculations
  • Volume change percentages
  • Shape evolution tracking
  • New findings identification

⚖️ Uncertainty and Limitations

Understanding AI Uncertainty

{
"uncertainty_metrics": {
"epistemic_uncertainty": 0.12, // Model uncertainty
"aleatoric_uncertainty": 0.08, // Data uncertainty
"total_uncertainty": 0.20,
"confidence_interval": [0.73, 0.91],
"prediction_explanation": "High contrast lesion with clear borders"
}
}

When to Be Cautious

  • Edge cases: Rare pathologies, unusual presentations
  • Poor image quality: Motion artifacts, low resolution
  • Pediatric patients: Limited training data
  • Implants/hardware: Potential interference
  • Multi-pathology cases: Complex interactions

🎯 Clinical Decision Support

Recommendation Types

{
"recommendations": {
"imaging": [
{
"type": "follow_up_ct",
"timeframe": "3_months",
"reason": "monitor_nodule_growth",
"contrast": "without"
}
],
"clinical": [
{
"action": "pulmonology_referral",
"urgency": "routine",
"reason": "nodule_evaluation"
}
],
"additional_testing": [
{
"test": "pet_scan",
"indication": "characterize_lesion",
"priority": "consider"
}
]
}
}

Treatment Pathway Integration

  • Guidelines compliance: NCCN, ACR, ESR protocols
  • Risk stratification: Low, intermediate, high risk
  • Cost-effectiveness: Optimize imaging utilization
  • Patient preferences: Shared decision-making support

🔍 Visual Interpretation Aids

Heatmaps and Overlays

  • Attention maps: Areas of AI focus
  • Confidence overlays: Visual confidence representation
  • Segmentation masks: Anatomical structure outlines
  • Comparison views: Side-by-side analysis

Annotation Features

{
"annotations": {
"bounding_boxes": [
{
"coordinates": [120, 80, 240, 160],
"label": "suspicious_area",
"confidence": 0.85
}
],
"segmentation_masks": {
"lung_fields": "base64_encoded_mask",
"heart_contour": "base64_encoded_mask"
},
"arrows_and_callouts": [
{
"type": "arrow",
"start": [150, 120],
"end": [180, 140],
"label": "area_of_concern"
}
]
}
}

⚠️ Common Interpretation Pitfalls

False Positives

  • Artifacts mistaken for pathology
  • Normal variants flagged as abnormal
  • Overlapping structures misidentified

False Negatives

  • Subtle findings missed
  • Atypical presentations
  • Poor image quality masking pathology

Overreliance on AI

  • Confirmation bias - Accepting AI results without scrutiny
  • Automation bias - Reduced human vigilance
  • Context neglect - Ignoring clinical picture

📚 Best Practices for Result Interpretation

✅ Do

  • Always correlate with clinical context
  • Review original images, not just AI overlays
  • Consider differential diagnoses
  • Document AI assistance in reports
  • Maintain clinical reasoning skills

❌ Don't

  • Accept results without clinical correlation
  • Ignore low-confidence findings completely
  • Skip verification of critical findings
  • Rely solely on AI for urgent cases
  • Forget to consider image quality issues

🔗 Integration with Clinical Workflow

PACS Integration

<!-- DICOM Structured Report Example -->
<DicomSR>
<Finding>
<Text>AI-detected pulmonary nodule</Text>
<Confidence>0.87</Confidence>
<Location>RUL posterior segment</Location>
<Measurements>8mm diameter</Measurements>
</Finding>
</DicomSR>

Report Generation

Structured reporting templates integrate AI findings:

  • Impression section: AI-highlighted abnormalities
  • Recommendations: Evidence-based follow-up
  • Comparison: Prior study analysis
  • Limitations: AI uncertainty documentation

Key Takeaways
  • Confidence scores guide clinical attention but don't replace judgment
  • Always consider clinical context and image quality
  • Use AI as a diagnostic aid, not replacement for expertise
  • Document AI assistance for regulatory compliance
  • Maintain skeptical evaluation of all AI outputs