Interactive API Explorer
Experience the Neolens API hands-on with our interactive documentation. Test endpoints, upload images, and see real AI analysis results without writing code.
π― Quick Start Guideβ
1. Authentication Setupβ
Before using the interactive explorer, you'll need an API key:
# Your API key format
neolens_live_abcd1234efgh5678ijkl9012
Getting your API key:
- Visit neolens.ai/dashboard (fictional)
- Navigate to "API Keys" section
- Click "Generate New Key"
- Copy and save your key securely
2. First Interactive Requestβ
Interactive API Testerβ
Note: This is a documentation mockup. In a real implementation, this would be a functional API testing interface.
π Interactive Documentation Featuresβ
Live Code Examplesβ
Each endpoint includes runnable examples in multiple languages. Use the interactive generator below to produce readyβtoβrun code for uploading an image to the Neolens API with your parameters:
Tip: Replace
YOUR_API_KEY
with a valid key and pick your preferred language.
Fallback (static tabs)
If JavaScript is disabled, use one of these copyβpaste examples:
- Python
- JavaScript
- cURL
- PHP
- Ruby
# Python example
import requests
url = "https://api.neolens.ai/v1/analyze"
headers = {"Authorization": "Bearer YOUR_API_KEY"}
files = {"image": open("chest_xray.jpg", "rb")}
data = {"confidence_threshold": 0.75, "modality": "auto-detect"}
resp = requests.post(url, headers=headers, files=files, data=data)
resp.raise_for_status()
result = resp.json()
print(f"Analysis complete: {result['data']['findings']}")
// Node.js example
import fs from "node:fs";
import fetch from "node-fetch";
import FormData from "form-data";
const url = "https://api.neolens.ai/v1/analyze";
const form = new FormData();
form.append("image", fs.createReadStream("chest_xray.jpg"));
form.append("confidence_threshold", "0.75");
form.append("modality", "auto-detect");
const resp = await fetch(url, {
method: "POST",
headers: { Authorization: "Bearer YOUR_API_KEY" },
body: form
});
if (!resp.ok) throw new Error(`HTTP ${resp.status}`);
const result = await resp.json();
console.log("Findings:", result.data.findings);
# cURL example
curl -X POST "https://api.neolens.ai/v1/analyze" \
-H "Authorization: Bearer YOUR_API_KEY" \
-F "image=@chest_xray.jpg" \
-F "confidence_threshold=0.75" \
-F "modality=auto-detect"
<?php
// PHP example (requires ext-curl)
$ch = curl_init("https://api.neolens.ai/v1/analyze");
$post = [
"image" => new CURLFile("chest_xray.jpg"),
"confidence_threshold" => "0.75",
"modality" => "auto-detect"
];
curl_setopt_array($ch, [
CURLOPT_POST => true,
CURLOPT_POSTFIELDS => $post,
CURLOPT_HTTPHEADER => ["Authorization: Bearer YOUR_API_KEY"],
CURLOPT_RETURNTRANSFER => true
]);
$resp = curl_exec($ch);
if ($resp === false) { throw new Exception(curl_error($ch)); }
curl_close($ch);
$result = json_decode($resp, true);
print_r($result["data"]["findings"]);
# Ruby example
require "net/http"
require "uri"
require "json"
uri = URI.parse("https://api.neolens.ai/v1/analyze")
request = Net::HTTP::Post.new(uri)
request["Authorization"] = "Bearer YOUR_API_KEY"
form_data = [
["image", File.open("chest_xray.jpg")],
["confidence_threshold", "0.75"],
["modality", "auto-detect"]
]
request.set_form form_data, "multipart/form-data"
res = Net::HTTP.start(uri.hostname, uri.port, use_ssl: true) do |http|
http.request(request)
end
result = JSON.parse(res.body)
puts result.dig("data", "findings")
Response Visualizationβ
Interactive response viewer with syntax highlighting and expandable sections:
Response Explorerβ
{ } object Β· 3 keys
"success"
"8.3s"
data object Β· 1 keys
findings array Β· 1 items
findings[0] object Β· 3 keys
"pulmonary_nodule"
0.87
bounding_box array Β· 4 items
245
156
32
28
π§ͺ Interactive Tutorialsβ
Tutorial 1: Your First AI Analysisβ
Goal: Upload an image and get AI analysis results
Estimated time: 5 minutes
Steps to Completeβ
Step 1: Prepare Your Imageβ
- β Download sample image
- β Ensure image is < 10MB
- β Supported formats: DICOM (.dcm), JPEG (.jpg), PNG (.png)
Step 2: Authenticationβ
- β Enter your API key in the field above
- β Test connection with "Ping API" button
Step 3: Upload and Analyzeβ
- β Select your image file
- β Keep default settings (confidence: 0.75)
- β Click "Send Request"
Step 4: Interpret Resultsβ
- β Review the findings array
- β Check confidence scores
- β Read clinical recommendations
Tutorial 2: Batch Processingβ
Goal: Process multiple images efficiently
Estimated time: 10 minutes
Tutorial 3: Advanced Configurationβ
Goal: Customize AI analysis parameters
Estimated time: 15 minutes
{ "sensitivity": 0.8, "model_version": "v3.2.1", "analysis_depth": "deep", "roi": { "enabled": true, "auto_detect": false, "custom_roi": [ 100, 50, 400, 300 ] }, "output": { "include_heatmap": true, "include_measurements": true, "uncertainty_estimation": true, "generate_report": false } }
π§ Developer Toolsβ
API Schema Validatorβ
Request Validator (Live)β
Response Mock Generatorβ
Mock Response Generator (Live)β
// Click "Generate Mock"
Code Snippet Generatorβ
Language Code Snippet Generator
import requests
url = "https://api.neolens.ai/v1/analyze"
headers = {"Authorization": "Bearer YOUR_API_KEY"}
files = {"image": open("chest_xray.jpg", "rb")}
data = {"confidence_threshold": 0.75, "modality": "auto-detect"}
resp = requests.post(url, headers=headers, files=files, data=data)
resp.raise_for_status()
print(resp.json())
π Real-time API Statusβ
Current System Statusβ
All Systems Operationalβ
Service | Status | Response Time | Uptime |
---|---|---|---|
Authentication | π’ Healthy | 95ms | 99.98% |
Image Analysis | π’ Healthy | 8.2s avg | 99.95% |
Report Generation | π’ Healthy | 2.1s avg | 99.97% |
Documentation | π’ Healthy | 1.2s avg | 99.99% |
Queue Status: 3 requests pending, ~15s estimated wait
Last Updated: 2 minutes ago | View Detailed Status
Performance Metricsβ
Live Performance Dashboardβ
Requests/minute: ββββββββββ 240 RPM (80% of capacity)
Success Rate: ββββββββββ 97.8% (Last 24h)
Avg Response: ββββββββββ 8.3s (Target: <15s)
Geographic Performance:
- πΊπΈ North America: 180ms avg
- πͺπΊ Europe: 220ms avg
- π―π΅ Asia-Pacific: 280ms avg
π Interactive Learning Pathβ
Beginner Trackβ
- API Basics (10 min) - Authentication and first request
- Understanding Responses (15 min) - Interpreting AI results
- Error Handling (10 min) - Common issues and solutions
Intermediate Trackβ
- Configuration Options (20 min) - Customizing AI parameters
- Batch Processing (15 min) - Handling multiple images
- Integration Patterns (25 min) - Best practices for production
Advanced Trackβ
- Performance Optimization (30 min) - Scaling and efficiency
- Custom Workflows (25 min) - Building specialized pipelines
- Monitoring & Analytics (20 min) - Production deployment
Progress Tracking:
- β Completed: 3/9 modules
- π― Current: Module 4 - Configuration Options
- β±οΈ Estimated completion: 2.5 hours remaining
π‘ Tips for Successβ
Getting the Most from Interactive APIβ
Best Practicesβ
- Start with sample images to understand response format
- Test with different confidence thresholds to see impact
- Use the response validator to check your integration
- Save successful configurations as reusable profiles
Common Pitfallsβ
- Don't test with real patient data (use synthetic samples)
- Large images (>5MB) will have longer processing times
- Very low confidence thresholds may produce many false positives
Pro Tipsβ
- Use the "Copy as cURL" feature for quick testing
- Bookmark frequently used endpoint configurations
- Try the batch processor for multiple test images
- Use mock responses during development to avoid rate limits
- Zero setup: No installation or configuration required
- Real-time testing: See actual API responses immediately
- Learning by doing: Hands-on experience with all features
- Code generation: Get working examples in your preferred language
- Performance insights: Monitor response times and success rates