Uncertainty Estimation Module
The Uncertainty Estimation module quantifies the confidence level of AI-generated predictions to inform clinical decision-making.
🎯 Purpose
Help clinicians gauge reliability of detected anomalies and classifications, reducing risk of misinterpretation.
🔍 How It Works
- Uses probabilistic modeling and Bayesian inference techniques.
- Provides confidence intervals, predictive distributions, or entropy measures.
- Flags results with low certainty for further review.
⚙️ Key Parameters
Parameter | Type | Description | Default |
---|---|---|---|
confidence_level | float | Desired confidence threshold (0.0 - 1.0) | 0.95 |
method | string | Estimation technique: bayesian , ensemble , dropout | bayesian |
tip
- Choosing a higher confidence level increases caution but may reduce coverage.
- Experiment with different methods for best fit in your clinical setting.
📦 Output Format
Example:
{
"uncertainty": 0.12,
"confidence_interval": [0.75, 0.89],
"method": "bayesian"
}
🛠️ Usage Example
curl -X POST "https://api.neolens.ai/v1/uncertainty-estimation" \
-H "Authorization: Bearer <API_KEY>" \
-F "image=@scan_mri.png" \
-F "confidence_level=0.99"
⚠️ Limitations
- Uncertainty estimates depend on model calibration.
- Interpretation requires clinical context.
- Not a substitute for expert review.