Skip to main content

Uncertainty Estimation Module

The Uncertainty Estimation module quantifies the confidence level of AI-generated predictions to inform clinical decision-making.


🎯 Purpose

Help clinicians gauge reliability of detected anomalies and classifications, reducing risk of misinterpretation.


🔍 How It Works

  • Uses probabilistic modeling and Bayesian inference techniques.
  • Provides confidence intervals, predictive distributions, or entropy measures.
  • Flags results with low certainty for further review.

⚙️ Key Parameters

ParameterTypeDescriptionDefault
confidence_levelfloatDesired confidence threshold (0.0 - 1.0)0.95
methodstringEstimation technique: bayesian, ensemble, dropoutbayesian
tip
  • Choosing a higher confidence level increases caution but may reduce coverage.
  • Experiment with different methods for best fit in your clinical setting.

📦 Output Format

Example:

{
"uncertainty": 0.12,
"confidence_interval": [0.75, 0.89],
"method": "bayesian"
}

🛠️ Usage Example

curl -X POST "https://api.neolens.ai/v1/uncertainty-estimation" \
-H "Authorization: Bearer <API_KEY>" \
-F "image=@scan_mri.png" \
-F "confidence_level=0.99"

⚠️ Limitations

  • Uncertainty estimates depend on model calibration.
  • Interpretation requires clinical context.
  • Not a substitute for expert review.